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Abstract The convolutional neural network (CNN) features can give good description of
image content, which usually represent an image with a single feature vector. Although
CNN features are more compact than local descriptors, they still cannot efficiently deal
with large-scale retrieval due to the linearly incremental cost of computation and storage.
To address this issue, we build a simple but effective indexing framework on inverted table,
which significantly decreases both search time and memory usage. First, several strategies
are fully investigated to adapt inverted table to CNN features for compensating for quan-
tization error. We use multiple assignment for the query and database images to increase
the probability that relevant images are assigned to the same visual word obtained via clus-
tering. Embedding codes are also introduced to improve retrieval accuracy by removing
false matches. Second, a novel indexing framework that combines inverted table and hash-
ing codes is proposed. This framework is faster than the reformed inverted tables with
the introduced strategies. Experiment on several benchmark datasets demonstrates that our
method yields faster retrieval speed compared to brute-force search. We also provide fair
comparison between popular CNN features.
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1 Introduction

Image search aims to find relevant images of a specific query frommass data [79]. Themain effort
focuses on improving search accuracy and search efficiency. Search accuracy is closely related to
feature extraction, whereas search efficiency is mainly dependent on indexing structure.

To represent image content accurately, various feature-extraction schemes have been
developed [4, 8, 21, 24, 53, 55, 70], which can be roughly separated into two groups, i.e.,
global features [50] and local features [38]. Global features such as color histograms [21],
Tamura texture features [70] and moment invariants [24], are often statistics of image color,
textural or shape information, and each image is described as a single short vector. Gener-
ally, this kind of feature is compact and efficient for performing image search. However,
they cannot describe image details or handle transformation like rotation and change in illu-
mination, since they only capture low-level information. By contrast, local features, i.e.,
SIFT [53], GLOH [55], SURF [4] and HOG [8], describe an image with a set of descrip-
tors and are better at discriminating between contents. However, their shortcoming is that
the amount of local features is huge, even when features are extracted from a small-scale
dataset. When facing a large-scale dataset, image search on local features probably results
in unacceptable computation and storage cost. There is another branch of global features
that aggregate local descriptors of an image into a unique vector, e.g., Fisher vector (FV)
[61] and VLAD [11, 13, 17, 30, 51].

To speed up searching, various indexing schemes have been studied. Tree-based struc-
tures, such as R-tree [20], M-tree [7] and inverted table [68, 84, 89], generally divide the
entire feature space into several non-overlapping partitions. Since only a small proportion
of the database images that locate in the nearby partitions are compared to the query image,
search efficiency is significantly improved. Hashing [9, 32, 52, 54, 72–74, 77, 80, 90] learns
binary codes for images from global features. Since bitwise operation (XOR) is fast to
calculate the Hamming distance, search speed can be boosted greatly.

Many recent works of image search use the convolutional neural network (CNN) [35] to
extract image features [1, 2, 17–19, 34, 56, 62, 66, 71]. Instead of representing images with
hand-crafted descriptors, these methods encode each image into a unique global vector with
the designed network. They also provide a high-level description of the content of an image
[2]. Compared to local features, they are more suitable for retrieval, because their amount is
usually much more smaller for the same collection. For CNN features, hashing [74] seems
like agoodchoice as the indexing structure. However, it still fails to overcome the large-scale
issue, since search time still linearly increases with the database volume. When the size of
image collection grows to be huge, search time will be unacceptable. Therefore, it motivates
us to build efficient indexing for CNN features especially for large-scale image search.

In light of the above discussion, this paper propose an efficient indexing framework for
CNN features based on inverted table [76]. Our method draws inspiration from the dictio-
nary building of inverted table [68], which partitions the entire space into (Voronoi) cells
via clustering [29]. In this manner, we only need to compare a small number of descriptors
in the nearby cells with the query, which helps to reduce much search time. Motivated by
this benefit, we reform inverted table for CNN features.

The basic structure of the proposed method is illustrated in Fig. 1. It contains two main
procedures. Images are first encoded by a pre-trained CNN into feature vectors. Then, these
images are indexed by the proposed inverted indexing framework. The benefits are two-fold.
First, a query only needs to be compared with a small number of candidates that locate in the
nearby regions, which reduces calculation so as to greatly improve search speed. Second,
images are compressedly stored in inverted table, which vastly reduces the storage required.
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Fig. 1 The basic structure of the proposed method. Each image is encoded by a pre-trained convolu-
tional neural network. Then, the extracted vectors are mapped to multiple codewords and inserted into the
corresponding lists. (Best viewed when zoomed in.)

Both the computation cost and storage cost are expected to be reduced for large-scale image
search. In summary, our contributions are summarized as follows.

(1) We fully investigate several auxiliary strategies to reform inverted table for CNN fea-
tures. These strategies are employed for compensating for quantization error, which
is the main impediment to effectiveness when an image is represented as a single
CNN descriptor. More concretely, embedding codes [27, 76] are calculated as com-
pact representaton of images to prune false matches during search. Besides, multiple
assignment (MA) [31] is performed on the query and database images to increase the
probability that true matches exist in the candidate set. We demonstrate that both com-
putation cost and storage cost can be reduced with the reformed inverted table. To the
best of our knowledge, no similar indexing structure has been published.

(2) We propose a novel indexing framework that combines inverted table and hashing.
Inverted table is employed for picking candidates of the query, so that we only cal-
culate the distance between the hash codes of the query and a few candidates. In this
manner, search speed is boosted. We demonstrate this framework is faster than the
reformed inverted table in large-scale image search.

(3) We fairly compare the performance of the proposed method on several popular CNN
features (a short review is provided in Section 2). We demonstrate that the proposed
method is widely suitable for various CNN features, and it can significantly improve
search speed with a little loss of precision compared to brute-force search.

2 Related work

2.1 The convolutional neural network

The concolutional neural network (CNN) has drawn considerable attention from the com-
puter vision community due to its excellent ability for image classification [23, 35, 67, 69].
All CNNs have similar structure, which is the combination of several convolutional layers
and fully connected layers. Krizhevsky et al. won the ILSVRC-2012 competition with an 8-
layer CNN named AlexNet [35], which starts the popular research of CNN. Other famous
networks include the VGG nets [67], GoogLeNet [69] and ResNet [23]. The depth of the
networks is continuously growing. For example, the VGG nets have 16 or 19 layers. For
ResNet, its depth has reached 152 layers. Meanwhile, CNN has been widely applied in
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many other fields expect for image classification, e.g., object detection [15, 16, 22, 64, 65],
image-text matching [25, 87] and person re-identification [85, 88]. In this work, CNN is
utilized to extract expressive features for image search.

2.2 Deep learning for retrieval

Feature is the engine of image search. Some previous works [2, 66] have consider using
CNN features extracted by the models pre-trained on ImageNet [10, 35] for image retrieval.
These works show that CNN features have good ability to represent image content, and
search accuracy can be further improved by fine-tuning the model on the relevant datasets.
In [86], Zheng et al. conclude that CNN-based method yields competitive accuracy and has
advantage in efficiency than SIFT-based method on various retrieval tasks. Motivated by the
expressive ability of CNN features, a lot of works [1, 17–19, 34, 42, 43, 56, 62, 71] have
been proposed, which utilize deep networks for the retrieval task.

To improve robustness of CNN-based features, several methods aggregate region descrip-
tors to produce compact global features for image retrieval [1, 17–19, 34, 56, 62]. [1] applies
sum-pooling to whitened region descriptors. [34] extends [1] by allowing cross-dimensional
weighting. Other methods propose hybrid models which involve an encoding technique such
as FV [62] and VLAD [17]. Tolias et al. propose R-MAC [71], which produces a global
image representation by aggregating the activation features of a CNN in a fixed layout
of spatial regions. [18, 19] extend R-MAC by discriminatively learning the representation
parameters with the triplet ranking loss and by improving the region pooling mechanism
with a region proposal network. Different from the aggregation methods, Li et al. propose
a weekly supervised deep matrix factorization scheme [43] to learn hidden representation
of images. For image search, although deep learning can be used in another manner such as
metric learning [42], feature learning is a main research content of the technique.

Subspace learning [40, 41, 44] projects from the original high-dimensional feature space
to a low-dimensional subspace, wherein specific statistical properties can be well preserved.
It belongs to non-deep feature learning. CNN-based features are learned straightforward
from images, and they provide high-level descriptor of image content [2]. Although CNN
features are more compact than local hand-crafted descriptors like SIFT [53], there still
exists the issue of large-scale retrieval. Thus, we propose an efficient indexing framework
in this paper to handle the issue.

2.3 Inverted table

Inverted table is initially developed to index documents for text retrieval [3]. Sivic et al. [68] uti-
lize inverted table in the vision task that indexes images described by hand-crafted local features
via the bog-of-word (BoW) model [59, 60]. In BoW, each image is represented as an orderless
collection of visual words. To build an inverted table, a visual dictionary is first constructed
via clustering of image features. Then, the ID of an image is inserted into the corresponding
lists of the assigned visual words. During search, voting is performed to measure the
similarity between images. A complete structure of inverted table can be found in [76].

To efficiently construct a visual dictionary, some fast clustering algorithms are proposed
[59, 75]. Partitioned k-means (PKM) [75] splits the entire space into a set of subspaces
and then performs a separate k-means clustering process in each subspace. A complete
visual dictionary is built by combining different cluster centroids from multiple subspaces.
In this manner, PKM can fast build a large visual dictionary using a small training set.
A related work of PKM is product quantization (PQ), which estimates distance using
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vector-to-centroid distance. PQ decomposes the feature space into a Cartesian product of
low-dimensional subspaces and quantizes each subspace separately to reduce computation
and storage. [14, 33, 58] are proposed to improve the performance of PQ.

In addition, embedding codes [27, 76] are studied for improving search accuracy of
inverted table. These methods generate a short binary code for each descriptor, which is
inserted into inverted table with image ID. When searching is performed, embedding codes
are used to remove false matches from candidates before voting. In this manner, truly
matched images have more chance to rank ahead.

Our method is based on inverted table, i.e., [76]. We draw inspiration from the dictio-
nary building process that partitions the feature space into small regions. Then, a query is
expected to be compared with a small number of images in the nearby regions. However,
inverted table is more suitable for hand-crafted local features [76]. To solve the problem,
we utilize several strategies to reform inverted table for CNN features.

2.4 Hashing

Hashing [9, 72, 73, 77, 80], also known as binary coding, is another kind of indexing
technique to solve the large-scale retrieval problem. It compresses global features into equal-
length binary codes, and the Hamming distance is used for similarity measure. Search speed
on hashing indexing can be very fast, because the Hamming distance can be calculated with
bitwise operation (XOR). Besides, it reduces storage space because images are compres-
sively stored as hash codes. Although hashing is quite similar with embedding codes, they
are different techniques. The latter is designed for assisting inverted table.

Recent works [5, 12, 36, 37, 39, 45–47, 57, 78, 81–83, 91] utilize deep technique on
hash code learning. DH [12] and VDSH [82] exploit a non-linear deep network to produce
hash codes for compressing global descriptors. These methods use hand-crafted features,
which is similar with traditional hashing [9, 72, 73, 77, 80]. To capture information beneath
images, most recent methods are CNN-based hashing models [5, 36, 37, 39, 45–47, 57,
81, 83, 91]. In these works, the input of the hashing network derives from the preceding
CNN so as to learn good feature extraction together with hash mapping. For example, Mu
et al. propose DeepHash [57], which jointly learns the CNN and hashing network with
the proposed exponentiated loss function. Similarly, Li et al. propose DHNNs [39], i.e., a
CNN-based hashing approach for large-scale remote sensing image retrieval. DHNNs are
composed of a feature network and a hashing network, and the networks can be optimized
in the end-to-end training.

Hashing seems a solution to indexingCNN features. However, the linear increase in search time
restricts its application and makes it inefficient for searching in a large-scale database. To
overcome its shortcoming, we propose a novel indexing framework that combines hashing
with inverted table. In this framework, CNN features are encoded as compressed hash codes
by hashing and inverted table is used to pick candidates from the gallery. In this manner,
only a small number of database images need to be compared with the query by measuring
the fast Hamming distance, and search speed is expected to be improved. Note that the
framework is designed for hashing that takes hand-crafted features as input. CNN-based
hashing is not considered because it generates hash codes directly from input images.

3 Key problem & solution

Although hashing seems a good choice for indexing CNN features, it still suffers from
linearly increased search time with the database volume, and it will be inefficient on massive
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data. To effectively index large-scale CNN features, we want to build an indexing framework
based on inverted table. Some key problems are summarized in the following and we provide
our solution after each problem.

Problem 1: How to modify inverted table to make it suitable for CNN features?
In traditional inverted table, images are indexed by storing their IDs in the corre-

sponding lists of visual words according to assignment of their local descriptors. That is,
traditional inverted table is tailored for local features. However, CNN features fall into
global representation of images, the structure of inverted table needs to be modified to
adapt it to CNN features.

Solution. We make simple modification to the original structure of inverted table. For
the same set of images, the amount of CNN features is usually much smaller than hand-
crafted local features. Therefore, we perform partitioned k-means (PKM) to cluster CNN
features into a large visual dictionary. PKM splits a high-dimensional space into sev-
eral low-dimensional subspaces, and then performs k-means clustering separately in each
subspace. Then, it combines visual subdictionaries in different subspaces by the Carte-
sian product, and finally constructs a complete visual dictionary. In this manner, it can
fast build a large visual dictionary using a small number of training descriptors, which is
proper for CNN features.
After a visual dictionary is built, the image IDs should be inserted into the inverted

table properly. However, each image only contains one CNN feature, the quantization
error between CNN features and visual words plays major effect on search accuracy, and
it will be more serious than that of hand-crafted local features. For example, dissimilar
images may be assigned to the same visual word. Therefore, we need to address the
second problem.

Problem 2: How to compensate for the quantization error between CNN features and
visual words?

Solution. We utilize several auxiliary strategies to compensate for the quantization error
between CNN features and visual words. The ill effect of quantization error is that it
reduces the probability of finding the true match, because dissimilar images may be
assigned to the same visual word. Similarly, similar images possibly locate in different
Voronoi cells so that some true matches will not be picked as candidates. To overcome
this problem, we apply two strategies to inverted table.
The first strategy is that we employ multiple assignment (MA) [28] on both database

and query images. In this strategy, each CNN feature is assigned to multiple nearest
visual words. That is, for an database image, its ID is inserted into multiple lists of the
assigned visual words. For an query image, it will look into multiple lists of visual words
to pick out candidates. In this manner, the chance of finding out the positive result in the
candidate set is increased so as to improve search accuracy.
The second strategy is that we introduce embedding codes [27, 76]. This technique

generates a short binary code for each CNN feature based on the assigned visual word,
which is inserted into inverted table with the image ID. When searching is performed,
embedding codes are used to remove false matches from candidates. In this manner,
similar images of the query are more possible to rank ahead.

Problem 3: How to benefit from both inverted table and hashing?
Hashing is tailored for CNN features but suffers from linearly increased search time.
Inverted table essentially partitions feature space into small regions, so that only a small
number of candidates need to be compared with the query.Can we combine inverted table
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and hashing so as to benefit from both techniques? Our answer is yes, and we propose a
new indexing framework.

Solution. We remove the embedding codes from inverted table, and store the hash codes
of the database images. During search, the image IDs of the candidates are obtained from
inverted table. Then, the hash codes of the candidates are picked out, which are compared
with the hash code of the query. In this manner, only a small part of database images are
compared with the query so as to reduce much search time.

4 Methodology

4.1 Reform inverted table for CNN features

Suppose there exists an image set X = {x1, ..., xN } that contains N images described
by D-dim CNN features, where xi ∈ R

D, i = 1, ..., N . We want to build efficient
indexing for these images with inverted table. To this end, a visual dictionary W =
{w1, ..., wK } is constructed, where K is the number of visual words. If K is too small,
efficiency will be deteriorated since too many images locate in the same Voronoi cell
partitioned by W , which will generate a large candidate set. Then, the query image
has to be compared with numerous candidates. For this reason, a large visual dictio-
nary is needed. However, the number of CNN features extracted from the same dataset
is usually much smaller than hand-crafted local features. It is difficult to build a large
visual dictionary. To this end, we perform partitioned k-means (PKM) [75] on CNN
features. PKM first splits CNN features into M segments, which usually have equal
length, and then performs k-means clustering on each segmented part so as to con-
struct M subdictionaries. Then, the subdictionaries are combined via the Cartesian product
to build a large visual dictionary [75], which is next used to construct an inverted
table.

Algorithm 1 Building index on IVTCNN.

Input:

Database images , dictionary size , MA number , bit number .

Output:

Inverted table

1: Construct by PKM [75];

2: for all in do

3: Initialize with an empty list;

4: end for

5: for all in do

6: := the image ID of ;

7: := nearest visual words of ;

8: for all in do

9: := the corresponding list of ;

10: Calculate the -bit embedding code ;

11: Insert into ;

12: end for

13: end for
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Consider that each image is represented as a single CNN feature, quantization error will
heavily influence search accuracy. For example, similar images may be assigned to different
visual words. If each image is only assigned to the nearest visual word, it will have a small
chance to find similar images in the corresponding list of the same visual word. To address
this problem, we employ multiple assignment (MA) [28], which assigns each CNN feature
to multiple visual words. In this manner, each image is inserted into S image lists of inverted
table, which will increase the chance of finding the positive result.

Algorithm 2 Performing image search on IVTCNN.

Input:

Query image , MA number, , threshold .

Output:

Ranked list of the retrieved images .

1: Construct an empty list ;

2: := nearest visual words of in ;

3: for all in do

4: := the corresponding list of ;

5: Calculate the embedding code of ;

6: for all in do

7: if then

8: Insert into ;

9: end if

10: end for

11: end for

12: Count the frequency of IDs in ;

13: Rank the retrieved images from high to low frequency;

Searching is based on voting. Given a query image xq , it first looks into the image lists
of the W nearest visual words to obtain all the images as candidates. Then, the candidates
are sorted by their frequency of occurrence. To further improve search accuracy, embedding
codes, such as [27, 76] are also introduced into inverted table. These methods calculate a
L-bit short binary code for each CNN feature based on the assigned visual word. During
search, in each image list, false matches whose distance to the query is beyond a threshold
T are removed. Then, the left images in the W image lists constitute the candidate set. It
increases the probability that the positive result ranks ahead.

The structure of the indexing framework that reforms inverted table for CNN features is
illustrated in Fig. 2. We denote the framework as IVTCNN. In Algorithm 1 and Algorithm 2,
we summarize the process of building index and performing image search on the reformed
inverted table, respectively. In these algorithms, the built index is denoted as ivtcnn, which
is the collection of a visual dictionary W and a set of visual-word corresponding lists
{Li}i=1...K .

In practice, we find that IVTCNN achieves high precision when the MA numbers S

(for database images) and W (for query images) both equal to large values. However, in
this situation, search time will be too long. We think that the bottleneck appears in dis-
tance calculation of embedding codes. In IVTCNN, the calculation of embedding codes are
based on both CNN features and their assigned visual words. The embedding codes of an
image in different corresponding lists are different. As a result, a query image has to be
repeatedly compared with the images in different lists of the assigned visual words. It is
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Fig. 2 The structure of IVTCNN, which reforms inverted table for CNN features. Images in the database Xdb

are indexed by inserting their IDs with the embedding codes into the inverted table. Multiple assignment is
performed as an auxiliary technique, which assigns each image to multiple visual words so as to improve
search accuracy. (Best viewed when zoomed in.)

possible that a query image has been compared with a candidate image for several times.
If each image can be represented as a unique binary code, we can only compare each can-
didate image with the query image only once so as to reduce much search time. For this
reason, it motivates us to combine inverted table and hashing to propose a new indexing
framework.

Algorithm 3 Building index on IVT-HASHCNN.

Input:

Database images , dictionary size , MA number , bit number .

Output:

Inverted table

1: Construct by PKM [75];

2: for all in do

3: Initialize with an empty list;

4: end for

5: Initialize with an empty set;

6: for all in do

7: Calculate the -bit hash code of ;

8:

9: := the image ID of ;

10: := nearest visual words of ;

11: for all in do

12: := the corresponding list of ;

13: Insert into ;

14: end for

15: end for

.
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4.2 Combine inverted table and hashing

We reform inverted table for CNN features to propose IVTCNN. However, we do not modify
the search process, so that searching on IVTCNN is still performed by voting. To obtain high
search accuracy on IVTCNN, an essential condition should be reached. That is, the positive
result should be assigned to the same visual word with the query as much as possible. It
requires that the MA numbers for both the database and query images (S and W ) should
equal to large values. Nevertheless, when S and W are large, IVTCNN will lose efficiency.

We think that the use of voting and embedding codes limits the search speed on IVTCNN.
Voting requires large values of the MA numbers (S and W ) to increase the chance that
the positive result and the query are assigned to the same visual word. However, a large S

indicates that the image list of each visual word usually contains many images, and a large
W indicates that a query looks into many image lists to collect candidates. The enlargement
of the two parameters will increase the distance calculation between embedding codes so as
to increase search time. Furthermore, the value of embedding codes is also related to visual
words [27, 76]. As a result, the embedding codes of the same CNN feature based on different
visual words are not identical. For this reason, a query has to be repeatedly compared with
the images in different lists of the assigned visual words utilizing the embedding codes.
However, it is possible that a query has been compared with a database image for several
times. If we can represent each image with a unique binary code, we can compare two
images only once so as to reduce much search time.

Algorithm 4 Performing image search on IVT-HASHCNN

Input:

Query image , MA number , threshold .

Output:

Ranked list of the retrieved images .

1: Calculate the hash code of ;

2: Construct an empty set ;

3: := nearest visual words of in ;

4: for all in do

5: := the corresponding list of ;

6: for all in do

7: ;

8: end for

9: end for

10: for all in do

11: := the hash code of the image whose ID is ;

12: if then

13: Remove from ;

14: end if

15: end for

16: Rank the left images in by ascending order of distance to ;

In light of the above discussion, we desire to further reform inverted table by discarding
voting and storing each image as a unique binary code. To achieve the target, we propose
a new indexing framework that combines inverted table and hashing. The benefits of repla-
cing embedding codes with hash codes are two-fold. First, two images are compared only
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once. In the proposed framework, candidates are sorted by the distance to the query instead
of their frequency of occurrence. In this manner, no matter how many times a database
image is found in the candidate set of the query, we need to calculate the distance between
their hash codes once. Second, smaller values of the MA number (S and W ) are expected.
In the new framework, we only need to ensure that the positive result can be found in the
candidate set. It is much easier to be reached than the condition that the positive result
exists the most frequently in the candidate set. Therefore, we can expect that smaller values
of the MA numbers are needed, which will also reduce the computational cost. The struc-
ture of the indexing framework that combines inverted table and hashing is illustrated in
Fig. 3. The framework is denoted as IVT-HASHCNN. Some minor changes have been made
on it compared to IVTCNN. First, we store the hash codes in an independent space out of
the inverted table. Second, we only store image IDs in the corresponding lists of the visual
words. Both changes help to reduce storage. Third, the retrieved images are ranked accord-
ing to their Hamming distance to the query. In Algorithm 3 and Algorithm 4, we summarize
the algorithms of building index and performing image search on the indexing framework,
respectively. The built index is denoted as ivt-hashcnn in these algorithms. It has three com-
ponents, i.e., a visual dictionaryW , a set of visual-word corresponding lists {Li}i=1...K and
a set of hash codesH.

5 Experiment

We test the proposed method on three instance-retrieval datasets, i.e., Holidays [27], Oxford
[63], UKbench [59], and a class-retrieval dataset, i.e., NUS-WIDE [6]. Both small-scale
retrieval and large-scale retrieval are tested.

Fig. 3 The structure of IVT-HASHCNN, which combines inverted table and hashing. For each CNN feature
xdb in the database, we calculate the hash code hdb and store it in an hash table. Images are indexed by insert-
ing their image IDs into the inverted table. Multiple assignment is also performed as an auxiliary technique
to improve search accuracy. (Best viewed when zoomed in.)
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5.1 Datasets

Holiday [27] is an image dataset containing some personal holiday photos. It contains
1,491 images separated into 500 groups. and each group represents a specific scene or
object. The first image of each group is the query image and all the other images are the
correct retrieval results.

Oxford [63] is a building dataset containing 5,062 images, which are downloaded from
Flickr by searching for particular Oxford landmarks. The dataset is manually annotated
to generate a comprehensive ground truth for 11 different landmarks, each is given 5
possible queries. Therefore, there are 55 queries in total.

UKbench [59] is a dataset that contains 10,200 images in total. Each 4 images are as
a group, which are about the same object from different viewpoints. The first image in
each group is as a query, which gives 2,550 queries in total.

NUS-WIDE [6] contains 269,648 images from Flickr, and each image is labeled with at
least one of 81 tags. The images of the most frequent 21 tags are picked out to test class
retrieval, and the amount is 89,528 in total. These images are partitioned into two subsets,
where 5% of the images are used as the query set, and the remaining images are used as
the database set. In this dataset, two images are treated as true match if they have at least
a common tag.

MIRFlickr [26] is a large-scale dataset that contains 1,000,000 images downloaded from
Flickr. We use the dataset in our experiment as distractors to test the performance of
large-scale retrieval.

5.2 Experimental setup

Feature: We extract CNN features from popular networks to test the adaptability of the
proposed method. The networks include AlexNet [35], VGG nets (VGG16 and VGG19)
[67], GoogLeNet [69] and ResNet (ResNet50, ResNet101, ResNet152) [23]. The CNN
features of first two networks are extracted from the penultimate fully-connected (FC)
layer, which are 4096-dim. The CNN features of the last two networks are extracted from
the last FC layer, which are 1000-dim. All the networks are pre-trained on ImageNet
[10].

Metric: We use mean average precision (MAP) as the search accuracy metric. Given a
query and R retrieved results, the value of average precision (AP) is defined as:

AP = 1

l

∑R

r=1
P(r)ι(r) (1)

where l is the number of positive results in the retrieved set. P(r) denotes the precision
of the top r retrieved documents, and ι(r) = 1 if the r th retrieved document is a true
positive, but ι(r) = 0 otherwise. R is set to the size of database. The values of AP over
all queries are averaged to obtain the MAP score. The larger the MAP, the better the
accuracy. Note that the query image is removed from the retrieval results to make the
MAP value more reasonable.
Search time in the on-line phase is used as the speed metric. It includes the run-

ning time to perform the entire search including assignment, voting and ranking. Shorter
search time indicates better efficiency. We report the averaged search time to perform a
query in our experiment.
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Platform: The experiment is performed on a server with an Intel Xeon 2.5GHz CPU,
32GB RAM and Windows Server 2008 R2 x64 operating system. MATLAB R2015a is
used as the software to run all the experiment.

5.3 Compared methods

• Brute Force. It performs brute-force search using CNN features, and it is the baseline
of our method.

• IVTCNN(HE). It is the version of IVTCNN that uses Hamming embedding (HE) [27] to
calculate embedding codes.

• IVTCNN(LSE). It is the version of IVTCNN that uses linear segment embedding (LSE)
[76] to calculate embedding codes.

• LSH. Locality sensitive hashing (LSH) [9] maps CNN features into L-dim vectors with
a mapping matrix which is generated from the standard normal distribution. Then, it
binarizes the vectors into L-bit hash codes.

• IVT − HASHCNN (LSH). It is the version of IVT-HASHCNN that uses LSH [9] to learn
hash codes.

• VDSH. Very Deep Supervised Hashing (VDSH) [82] uses deep neural networks for
supervised learning of hash codes.

• IVT − HASHCNN(VDSH). It is the version of IVT-HASHCNN that uses VDSH [82] to
learn hash codes.

The code of VDSH [82] is provided by the authors. The other methods are implemented
by ourselves.

5.4 Sensitivity to parameters

We investigate the sensitivity of the proposed method to several important parameters,
i.e., the MA number for database images S, the MA number for query images W , the
bit number L and the distance threshold T . We perform experiment on three datasets,
i.e., Holidays, Oxford and UKbench. IVTCNN(LSE) is tested to observe the sensitivity of
IVTCNN in which we reform inverted table for CNN features. IVT-HASHCNN(LSH) is
tested to observe the sensitivity of IVT-HASHCNN in which we combine inverted table and
hashing.

Fig. 4 Variation of MAP of IVTCNN(LSE) and IVT-HASHCNN(LSH) with the bit number L on a Holidays,
b Oxford and c UKbench. Images are represented with CNN features extracted from AlexNet. (Best viewed
when zoomed in.)
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Fig. 5 Variation of MAP for a IVTCNN(LSE), b IVT-HASHCNN(LSH) with the distance threshold T on
three datasets, i.e., Holidays, Oxford and UKbench. Images are represented with CNN features extracted
from AlexNet. (Best viewed when zoomed in.)

A medium bit number is proper for IVTCNN(LSE), while a large bit number is suit-
able for IVT-HASHCNN(LSH). As illustrated in Fig. 4, IVTCNN(LSE) achieves the highest
search accuracy on all the three datasets when the bit number L of embedding codes
equals to the median value, i.e., 512. It is reasonable since median-length embedding codes
help to balance the amount of false candidates and missed candidates. When L is short,
dissimilar images may have similar embedding codes so as to collect some false candidates.
When L is short, the embedding codes of similar images are possibly very different. Then,
some matched images are missed in the candidate set. While for IVT-HASHCNN(LSH), the
highest search accuracy is achieved when the bit number of hash codes is largest. It fits the
conclusion drawn in [9] that a large bit number will improve the probability of mapping
similar features into the same hash code. However, a large bit number will also increase the
computational cost of distance calculation. To balance search accuracy and speed, L is set
to 512 for both the methods in default.

Distance threshold is properly set to the value that equals to about 30% of the bit num-
ber for IVTCNN(LSE). As illustrated in Fig. 5, the best values of the distance threshold
T for IVTCNN(LSE) are 200, 200, 180 on Holidays, Oxford, and UKbench, respectively.
These values equal to about 30% of the bit number, i.e., 512. When T is small, the positive
result may be removed from candidates by mistake. On the contrary, when T is too large,
many dissimilar images are possible reserved in the candidate set, which will reduce search
accuracy.

Fig. 6 Variation of MAP for IVTCNN(LSE) with the multiple assignment numbers (S and W ) on a Holidays,
b Oxford and c UKbench. Images are represented with CNN features extracted from AlexNet. (Best viewed
when zoomed in.)



Multimed Tools Appl

Fig. 7 Variation of MAP for IVT-HASHCNN(LSH) with the multiple assignment numbers (S and W ) on
a Holidays, b Oxford and c UKbench. Images are represented with CNN features extracted from AlexNet.
(Best viewed when zoomed in.)

Search accuracy of IVT-HASHCNN(LSH) is increased with distance threshold until it
equals to a specific value. Then, the performance of IVT-HASHCNN(LSH) is stable. As
illustrated in Fig. 5, the specific values are 300, 250, 250 on Holidays, Oxford and UKbench,
respectively. In IVT-HASHCNN(LSH), candidates are ranked according to the Hamming
distance of their hash codes to the query. The specific value indicates that the distance
between the positive result and query is below it.

Search accuracy is improved for both IVTCNN(LSE) and IVT-HASHCNN(LSH) when
either of multiple assignment (MA) numbers equals to a large value. In Figs. 6 and 7, we
show the variation of MAP with different combination values of the MA numbers, i.e.,
S and W , for IVTCNN(LSE) and IVT-HASHCNN(LSH), respectively. It can be observed
that for both the methods, high search accuracy is achieved when either of the two MA
numbers equals to a large value. It is reasonable since enlarging the value of the parameters
will increase the probability of finding the positive result in the candidate set. We make S

equal to W for for simplicity. The variation of search accuracy and time with equal S and
W for IVTCNN(LSE) and IVT-HASHCNN(LSH) is illustrate in Figs. 8 and 9, respectively.
Although search accuracy is improved with increase of the MA numbers, search time is also
increased which indicates that both methods lose efficiency. We set the MA numbers to 20
for IVTCNN(LSE) and 10 for IVT-HASHCNN(LSH), respectively, where we synthetically
consider the search accuracy and speed.

Fig. 8 Variation of a MAP and b search time for IVTCNN(LSE) with the multiple assignment numbers (S
and W ) when they are equal on Holidays, Oxford and UKbench. Images are represented with CNN features
extracted from AlexNet. (Best viewed when zoomed in.)
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Fig. 9 Variation of a MAP and b search time for IVT-HASHCNN(LSH) with the multiple assignment num-
bers (S and W ) when they are equal on Holidays, Oxford and UKbench. Images are represented with CNN
features extracted from AlexNet. (Best viewed when zoomed in.)

5.5 Comparison with baselines on instance-retrieval datasets

We compare the proposed method with several baseline methods on the three instance-
retrieval datasets, i.e., Holidays, Oxford and UKbench. Both small-scale and large-scale
image search are tested. Besides, we test on different CNN features to validate the adaptabil-
ity of the methods. The results of search accuracy and time for small-scale and large-scale
image search are reported in Tables 1 and 2, respectively. From the results, we arrive at four
major conclusions.

(1) IVT-HASHCNN(LSH) has similar search accuracy with LSH in most cases. For exam-
ple, when performing small-scale retrieval on Holidays with CNN features extracted
from AlexNet, the MAP score of LSH is 0.6027. Under the same experimental setting,
IVT-HASHCNN(LSH) achieves 0.5707. Similar result can be observed on large-scale
retrieval. Using AlexNet features, LSH achieves the MAP score of 0.4884, and
IVT-HASHCNN(LSH) achieves 0.4747. The results show that IVT-HASHCNN(LSH)
can retain the search accuracy of LSH to some extent.

(2) Our method can accelerate search speed especially for large-scale image search.
It can be observed in Table 2 that the search time of both IVTCNN(LSE) and
IVT-HASHCNN(LSH) is within a second on all the three datasets no matter which
CNN feature is used. These methods are even faster than LSH. Although we use the
fast Hamming distance to compare hash codes, the search time of LSH is still linearly
increased with the database size. However, in IVT-HASHCNN(LSH), only a small part
of images are compared with the query, it does not suffer from such a problem.

(3) IVT-HASHCNN(LSH) is superior to IVTCNN(LSE) in search accuracy and speed. As
illustrated in Tables 1 and 2, IVT-HASHCNN(LSH) achieves higher search accuracy
and smaller search time on all the three datasets, no matter which CNN feature is
used to represent images. For example, for small-scale retrieval on UKbench when
images are represented as AlexNet features, the MAP score and search time of
IVTCNN(LSE) are 0.6662 and 0.052s, respectively. While the MAP score and search
time of IVT-HASHCNN(LSH) are 0.7019 and 0.028s, respectively. Similar observa-
tion can be obtained under other experimental settings. Note that the MA numbers for
IVT-HASHCNN(LSH) are set to 10, which is smaller than that of IVTCNN(LSE), i.e.,
20. It validates our analysis in Section 4.2 that IVT-HASHCNN requires smaller MA
numbers than IVTCNN.
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Table 1 Search accuracy and time of the baselines and the proposed method on three instance-retrieval
datasets, i.e., Holidays, Oxford and UKbench for small-scale image search

Method Dataset

Holidays Oxford UKbench

MAP Time (s) MAP Time (s) MAP Time (s)

AlexNet

Brute Force 0.5728 0.012 0.3185 0.132 0.7221 0.240

LSH 0.6027 0.012 0.3358 0.034 0.7461 0.049

IVTCNN(HE) 0.4320 0.038 0.1678 0.056 0.5765 0.055

IVTCNN(LSE) 0.5459 0.051 0.2318 0.041 0.6662 0.052

IVT-HASHCNN(LSH) 0.5707 0.009 0.3174 0.010 0.7019 0.028

VGG16

Brute Force 0.6593 0.013 0.2624 0.122 0.8236 0.231

LSH 0.6737 0.011 0.2423 0.030 0.8021 0.052

IVTCNN(HE) 0.5481 0.048 0.1003 0.046 0.3665 0.049

IVTCNN(LSE) 0.5352 0.040 0.1364 0.092 0.6439 0.061

IVT-HASHCNN(LSH) 0.6093 0.023 0.2253 0.037 0.7610 0.026

VGG19

Brute Force 0.6433 0.010 0.2206 0.126 0.8167 0.240

LSH 0.6659 0.034 0.2048 0.052 0.8002 0.053

IVTCNN(HE) 0.5448 0.042 0.0916 0.090 0.3600 0.049

IVTCNN(LSE) 0.5150 0.042 0.1643 0.078 0.6310 0.060

IVT-HASHCNN(LSH) 0.5856 0.019 0.1782 0.045 0.7533 0.028

GoogLeNet

Brute Force 0.6089 0.009 0.2173 0.109 0.7986 0.217

LSH 0.5847 0.074 0.2024 0.076 0.7488 0.049

IVT-HASHCNN(LSH) 0.5066 0.017 0.1789 0.027 0.6631 0.019

ResNet50

Brute Force 0.6836 0.010 0.2677 0.105 0.8664 0.227

LSH 0.6675 0.010 0.2737 0.031 0.8375 0.050

IVT-HASHCNN(LSH) 0.5554 0.013 0.2571 0.042 0.7337 0.021

ResNet101

Brute Force 0.6977 0.010 0.2814 0.106 0.8610 0.222

LSH 0.6729 0.031 0.2148 0.038 0.8422 0.051

IVT-HASHCNN(LSH) 0.5725 0.013 0.2070 0.039 0.7312 0.021

ResNet152

Brute Force 0.6977 0.009 0.2837 0.106 0.8636 0.231

LSH 0.6860 0.008 0.2679 0.027 0.8366 0.050

IVT-HASHCNN(LSH) 0.5914 0.023 0.2566 0.031 0.7321 0.018

CNN features extracted from several pre-trained popular networks are compared to validate the adaptability
of the methods
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Table 2 Search accuracy and time of the baselines and the proposed method on three instance-retrieval
datasets, i.e., Holidays, Oxford and UKbench for large-scale image search

Method Dataset

Holidays Oxford UKbench

MAP Time (s) MAP Time (s) MAP Time (s)

AlexNet

Brute Force 0.4896 210.934 0.2557 241.002 0.6579 231.414

LSH 0.4884 3.324 0.2661 3.486 0.6975 3.449

IVTCNN(HE) 0.2386 0.801 0.0956 0.289 0.5042 1.024

IVTCNN(LSE) 0.3848 0.503 0.1759 0.241 0.6572 0.971

IVT-HASHCNN(LSH) 0.4747 0.203 0.2638 0.084 0.6667 0.299

VGG16

Brute Force 0.4930 229.147 0.2079 258.215 0.7897 233.632

LSH 0.4474 3.285 0.1930 3.429 0.7477 3.314

IVTCNN(HE) 0.1101 0.318 0.0407 0.383 0.2146 0.286

IVTCNN(LSE) 0.1725 0.358 0.0797 0.528 0.5452 0.317

IVT-HASHCNN(LSH) 0.4249 0.122 0.1884 0.167 0.7172 0.109

VGG19

Brute Force 0.4584 240.308 0.1511 257.909 0.7807 242.074

LSH 0.4235 3.424 0.1339 3.301 0.7430 3.314

IVTCNN(HE) 0.1162 0.342 0.0357 0.401 0.2102 0.285

IVTCNN(LSE) 0.1627 0.353 0.0928 0.460 0.5213 0.304

IVT-HASHCNN(LSH) 0.3991 0.126 0.1243 0.158 0.7080 0.084

GoogLeNet

Brute Force 0.3522 246.233 0.1348 265.454 0.7192 239.007

LSH 0.2997 3.273 0.1293 3.315 0.6509 3.298

IVT-HASHCNN(LSH) 0.2859 0.085 0.1252 0.108 0.5946 0.057

ResNet50

Brute Force 0.4725 248.600 0.2161 265.714 0.8324 247.769

LSH 0.4443 3.408 0.1972 3.411 0.7884 3.451

IVT-HASHCNN(LSH) 0.4034 0.089 0.1935 0.192 0.7034 0.068

ResNet101

Brute Force 0.4814 245.295 0.2188 269.339 0.8294 242.765

LSH 0.4591 3.258 0.1522 3.422 0.7980 3.155

IVT-HASHCNN(LSH) 0.4211 0.086 0.1515 0.147 0.7044 0.048

ResNet152

Brute Force 0.4888 248.398 0.2215 267.582 0.8333 250.913

LSH 0.4668 3.266 0.2091 3.422 0.7904 3.448

IVT-HASHCNN(LSH) 0.4351 0.082 0.2058 0.182 0.7029 0.062

MIRFlickr is used as distractors. CNN features extracted from several pre-trained popular networks are
compared to validate the adaptability of the methods
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(4) IVTCNN(LSE) is more sensitive to CNN features than IVT-HASHCNN(LSH). We
compare the CNN features extracted from the pre-trained model of several popular net-
works. As illustrated in Tables 1 and 2, the search-accuracy variation of IVTCNN(LSE)
on different features is much greater than IVT-HASHCNN(LSH) in most cases. For
example, on Holidays for large-scale retrieval, when CNN features are changed from
AlexNet to VGG16, the MAP score of IVTCNN(LSE) drops from 0.3848 to 0.1725.
While the MAP score of IVT-HASHCNN(LSH) is changed from 0.4747 to 0.4249,
which is changed less. It shows that CNN features have more impact on IVTCNN(LSE).

In summary, our method can improve search speed for large-scale image retrieval.
IVT-HASHCNN that combines inverted table and hashing is shown to be superior than
IVTCNN that reforms inverted table for CNN features with the two strategies. In Tables 1
and 2, we also compare our method with IVTCNN(HE), i.e., the reformed framework of the
inverted-table baseline in [76]. The results validate the superiority of IVT-HASHCNN, since
it has fast search speed with a little loss of search accuracy. Note that another benefit of the
proposed method is that it can reduce storage cost, because it only stores subdictionaries,
image IDs and binary codes.

However, there is limitation of the proposed method. For IVTCNN, it requests the feature
dimension to be an integral multiple of the bit number of embedding codes such as [27, 76].
For this reason, we do not report the performance of reformed inverted tables when CNN
features are extracted from GoogLeNet and ResNet. Besides, this method is not robust to
CNN features. For IVT-HASHCNN, its search accuracy is probably limited by the hashing
method that is used to calculate hash codes. And only the hashing methods that take hand-
crafted features as input are proper for this method.

In Fig. 10, we illustrate some visual retrieval results of our method, i.e.,
IVT-HASHCNN(LSH), on Holidays. The results indicate that our method outputs reasonable
rank lists.

Fig. 10 Retrieval results of the proposed method on Holidays. The results are sorted from left to right
according to their similarity to the query (high to low). The images in green boxes are true matches, and the
images in red boxes are false matches. Images are represented as CNN features extracted from AlexNet. We
observe that our method outputs reasonable rank lists
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5.6 Comparison with baseline on a class-retrieval dataset

We have observed that our method, i.e., IVT-HASHCNN, can build efficient indexing of
CNN features for large-scale instance-level image retrieval when it uses LSH [9] to calculate
hash codes. In this section, we test whether the method is efficient for large-scale class-
level image retrieval. To make IVT-HASHCNN work for class-level image retrieval, we use
VDSH [82] to calculate hash codes. VDSH is a state-of-the-art supervised hashing method
that uses deep networks to learn hash functions for hand-crafted features, which is suitable
to be utilized in IVT-HASHCNN. The new method is denoted as IVT-HASHCNN(VDSH).
We compare it with the baseline hashing method, i.e., VDSH on a class-retrieval dataset,
i.e., NUS-WIDE [6]. We report the search accuracy and time in Table 3.

Table 3 Search accuracy and time of the baseline and the proposed method on a class-retrieval dataset, i.e.,
NUS-WIDE for both small-scale and large-scale image search

Method Dataset

NUS-WIDE NUS-WIDE + MIRFlickr

mAP Time (s) mAP Time (s)

AlexNet

VDSH 0.5862 0.254 0.4032 1.675

IVT-HASHCNN(VDSH) 0.5865 0.043 0.3812 0.096

VGG16

VDSH 0.5893 0.305 0.3393 2.167

IVT-HASHCNN(VDSH) 0.5915 0.050 0.3204 0.103

VGG19

VDSH 0.5908 0.315 0.3615 0.919

IVT-HASHCNN(VDSH) 0.5911 0.059 0.3341 0.106

GoogLeNet

VDSH 0.5031 0.313 0.3144 1.826

IVT-HASHCNN(VDSH) 0.5057 0.037 0.2912 0.090

ResNet50

VDSH 0.5639 0.315 0.3378 2.300

IVT-HASHCNN(VDSH) 0.5652 0.047 0.3159 0.098

ResNet101

VDSH 0.5621 0.318 0.3515 2.096

IVT-HASHCNN(VDSH) 0.5643 0.069 0.3308 0.105

ResNet152

VDSH 0.5637 0.315 0.3606 2.224

IVT-HASHCNN(VDSH) 0.5646 0.048 0.3421 0.098

MIRFlickr is used as distractors for large-scale image search. CNN features extracted from several pre-
trained popular networks are compared to validate the adaptability of the methods
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Minor variation of the search accuracy metric A major difference between NUS-
WIDE and the three instance-retrieval datasets, i.e., Holidays, Oxford and UKbench is that
it has a large number of matched images for each query in the ground truth. However, our
method only returns a small number of candidate images, since it is based on inverted table.
If we still use MAP as the search accuracy metric to evaluate on all the groundtruch images,
it will be unfair for our method because it only returns a short list of top-position retrieved
images. In order to solve the problem, we use mAP instead of MAP to measure search
accuracy. mAP is short for mean average precision, whose AP score is still calculated as in
(1). The difference is that in MAP, R equals to the database size, but in mAP, R equals to
an established value. mAP evaluates the search accuracy of top-R retrieved results, which
is widely used in cross-media hashing such as [48, 49]. In our experiment, we set R to 50.

IVT-HASHCNN(VDSH) is efficient to index CNN features for large-scale class-level
image retrieval. We observe that IVT-HASHCNN(VDSH) achieves lower search accuracy
but is faster than VDSH when we perform large-scale retrieval. For example, as illustrated
in Table 3, when images are represented with the CNN features extracted from AlexNet,
the mAP score of VDSH is 0.4032 and the search time is 1.675s for large-scale retrieval.
Under the same setting, the mAP score of IVT-HASHCNN(VDSH) is 0.3812 and the search
time is 0.096s. Similar observation can be obtained when images are represented with the
CNN features extracted from the other networks. The results indicate that IVT-HASHCNN
is suitable for large-scale class-level image retrieval as well.

6 Conclusion

In this paper, we propose an efficient indexing framework to build index for large-scale
CNN features, and it is based on inverted table. Our contributions are two-fold. First, we
investigate two strategies to reform inverted table for CNN features. Second, we propose
a new framework that benefits from both inverted table and hashing. Experiment on four
datasets, i.e., Holidays, Oxford, UKbench and NUS-WIDE, demonstrates that our method
is efficient for large-scale image search. The limitation of the proposed method is that it
can only utilize hashing designed for hand-crafted features to help building index for CNN
features. However, most of the recent hashing methods extract hash codes directly from
images with CNNs [5, 36, 37, 39, 45–47, 57, 81, 83, 91]. How to accelerate such hashing
methods with a similar structure to our method is the future study of ours. Besides, as
another future work, we plan to introduce the proposed method into cross-media retrieval
[48, 49] to build efficient index for large-scale image-text embeddings.
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